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Abstract. Using the exact generating functions for solid-on-solid models, we construct 
‘necklace’ partition functions for wetting and prewetting at a sticky wall in two (bulk) 
dimensions. Three-component generalisations of these models, constructed to study inter- 
facial wetting, are introduced and solved. Based on these models we discuss the types of 
interfacial critical behaviour to be expected in three-component systems in two dimensions. 

1. Introduction 

In  two-dimensional systems many surface and interface properties in two-component 
systems are well approximated by solid-on-solid (SOS) models (see Abraham and Smith 
(1985) and references therein). Recently, Fisher (1984) (see also Huse et a1 1983) has 
studied these systems using a combination of random walk arguments and a ‘necklace’ 
(see 9 2) generating function, and is able to straightforwardly recaptfire the asymptotic 
results found in the original SOS calculations (Abraham and Smith (1985) and references 
therein). In this paper we show that the original SOS calculations (with a sticky wall 
potential) can be exactly recaptured using necklace generating functions. This assertion 
is explicitly demonstrated for wetting and prewetting at a sticky wall in two-component 
systems. The basic ingredients of the necklace generating functions and the subunit 
partition functions are given in § 2, while the wetting and prewetting cases are elucidated 
In 9 3. 

Using the above ideas, a model for interfacial wetting in three-component systems 
is constructed and solved. This model generalises those considered by Fisher (1984) 
(an area term is added) and  Selke et al(1985) (the direct interface is allowed a different 
string tension from the sum of the two indirect interfaces). As has been suggested 
before (Selke et a1 19851, the critical exponents present in SOS models of interfaces in 
three-component systems are the same as those found in depinning transitions at  
surfaces in two-component systems. This equivalence is explicitly demonstrated in the 
models studied here. 

In 9 5 we discuss the various interfacial behaviours possible in real three-component 
systems. In  particular we suggest that the exponent f should be observed at the chiral 
clock ( 2 ~ )  wetting line if a single-site anisotropy term is added and the interfacial 
adsorption is measured as a function of the anisotropy at fixed temperature, in the 
limit of small single-site anisotropy. In addition we suggest that at a first-order bulk 
transition, the interface may remain dry up  to a certain temperature. There may be a 
tricritical wetting point present in such cases. This may occur in the Blume-Emery- 
Griffiths model as the quadratic interaction term is increased in magnitude. 

The paper concludes in 0 6. 
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2. SOS necklace model components 

As discussed by Fisher (1984) (and references therein) and Huse et a1 (1983), a 
two-subunit necklace partition function of length n can be found from 

where Z,( t )  and Z,( t )  are the generating functions for the two subunits x and y ,  and 
the integration contour is a small circle around the origin. The result (1) may be seen 
from the following (Fisher 1984). 

If one knows the partition function, Z,,, for an n-site system, then the generadng 
function for the system is defined by 

02 

Z(t)= c t"Z, (2) 
, , = I  

where t is a fugacity variable. If one now considers a necklace composed of two types 
of subunits x and y,  as depicted in figure 1, and one can calculate the generating 
functions, ZX(t) and Z,(t), for the two components, then the generating function for 
the necklace of figure 1 is given by 

Z ( t )  = Z x ( t ) / ( l -  U2ZX(t)Z,(t)) (3) 

where Z(t) is the generating function for the necklace and U is an arbitrary vertex 
factor placed at each junction of the x and y beads. The contour integration in (1) 
then selects from (3) the necklace with n sites. 

1 1 
Figure 1. A two-component necklace made up of subunits (beads) of types x and y. 

The use of this necklace construction goes back at least as far as Temperley (1956) 
and has been recently used to study a wide variety of two-dimensional problems (see 
Fisher (1984) and references therein). 

In constructing S O S  models in two-dimensional systems the evidence suggests that 
continuous and discrete versions, and all models with weights P ( A h )  = exp(-/31AhlP), 
are in the same universality class, at least for p finite. The most analytic progress has 
been made on continuous models with p = 1 or 2. In this paper we use models with 
p = l ,  as in this case the use of the Green function identity allows us to treat the 
non-coexistent situation. Considerable analytic progress has also been made in the 
p = 2 case using field theoretical techniques, and for an introduction to this work we 
refer to Kroll and Lipowsky (1982) and Lipowsky et a1 (1983). 
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In studying surface properties in two-component systems and interfaces in three- 
component systems, the appropriate SOS models may be formed by various combina- 
tions of the following basic string partition functions (see figure 2). 

(a) The 'stuck string', 

Zn = a n  (4) 

where a is the surface stickiness. 

take on values --CO < hi < -CO), 

(b) The Onsager-Temperley string, full-space problem (the string is allowed to 

where K is the Boltzmann weight for the string tension. 

take on values 0 < hi <CO), 

(c) The Onsager-Temperley string, half-space problem (the string is allowed to 

Zn=:/om(4K2+w2) 4K sin2B(w)dw 

where tan O ( w )  = -w/2K. 

field) 
(d) The Abraham-Smith string (half-space Onsager-Temperley string in an external 

where the vj solve J, - , (av)=O (Abraham and Smith 1982, 1985). (Y = 2 K / H ,  where 
H is the external field. 

The above expressions are found by taking the continuum limit of p = 1 SOS models 
(see figure 2), and by using a Green function identity, transforming the eigenvalue 
problem to that involving a Schrodinger operator. The coexistent situation was first 
suggested by Abraham (1980) and explicitly presented by several workers (Burckhardt 
1981, Chalker 1981, Chui and Weeks 1981, Hilhorst and van Leeuwen 1981, Kroll 
1981, Vallade and Lajzierowicz 1981). The non-coexistent calculation leads to a Bessel 
equation as found by Abraham and Smith (1982). 

Figure 2. A full-space SOS string. 

-r- 
The hi take on integer values in the range -CO < h, < CO. 
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3. Wetting and prewetting 

In the wetting case, the subunit partition functions are given by the components (a) 
and (c) of § 2. The subunit generating functions are then given by 

m 

z(t)= t"Z,. (8) 
n = l  

Assuming the series is convergent, for subunit (a) we get 

Za( t )  = a t / (  1 - a t ) .  (9) 

For subunit ( c )  one has 

u2 du 
zc( t ,  = ? lom ( 1 + u 'I2( K - t + Ku2) 

where the summation in (8) has been started at n = 2 in this case (the n = 1 string has 
no meaning), and the summation and integration have been interchanged (this is valid 
if the series is convergent). The integration in (10) may be performed to obtain 

Z,( t )  = t [ A  - (A2 - l)'"] ( 1 1 )  
where 

A = -1 +2K/ t .  

The thermodynamics of the composite system is determined by the closest (to the 
origin) real singularity in the contour integration (1 ) .  There are two competing 
singularities in the composite generating function formed by combining Za( t )  and 
Z , ( t )  in (1 ) .  They are a pole at 

za(t)Zc(t)/t= 1 (13) 

(the extra factor of l / t  is a vertex factor arising from the fact that the sum in the 
generating function Zc( t )  began at n = 2) and a branch point at 

A 2 =  1 .  (14) 

The critical point is determined when the dominant contribution crosses over from 
one to the other. Carrying the calculation through using (9), ( 1 1 )  and (12) gives 
a,=  1/2K as expected (Abraham and Smith 1985). 

In the case of prewetting at a sticky wall, the appropriate subunits are (a) and (d). 
The generating function for (d) is 

Using the Mittag-Leffler expansion (Watson 1966), this becomes 

z d (  t )  = - K v 2  + 21<vJa (.v)/ Jm- l  (av) (16) 

where v 2  = t /  K. Combining ( 1 5 )  and (9) gives the problem studied by Abraham and 
Smith (1982, 1985). The dominant singularity in the composite generating function is 
always given by the smallest root (in absolute value) of 

(17) z a ( t ) z d (  f)/ f = 1. 



Necklace SOS models of interfaces and surfaces 3 89 

Again a vertex factor of l / t  is required. Using (9), (16) and (17) we find 

J,-l(crv) = 2KavJ,(av) (18) 

in agreement with the known result (Abraham and Smith 1982, 1985). There is no 
finite-temperature phase transition in this case as there is no crossover in the dominant 
singularity at a finite temperature, as long as H is finite. 

4. SOS models of interfacial adsorption 

To construct an SOS model of interfacial wetting in three-component mixtures, the two 
subunits that need to be considered in (1) are a simple string (modelling a direct 
interface between the two coexistent phases on either side of the interface) and a 
bubble (modelling a region where the third component of the mixture lies between 
the two coexistent bulk phases). To be completely general, it is also necessary to 
include a fugacity transverse to the interface. This allows the strings and bubbles to 
have a degree of freedom transverse to the direction of the interface. The model is 
pictorially represented in figure 3. Mathematically it is straightforward to introduce 
this extra fugacity. One merely introduces another fugacity variable in (1) and performs 
another contour integration to impose the constraint that the start and end of the 
interface are at the same height. The introduction of another fugacity variable in the 
string partition functions (a) to (c) of Q 2 is effected by removing the integrations. We 
then have 

The generating function for the string parts of the model depicted in figure 3 is 

where K 1  ( = J 1 / k b T )  is the string tension. Equation (20) is found by putting ( 5 )  
(without the integration) in (8). 

The bubble partition function is constructed by forming a bubble from two simple 
strings, then transforming to centre-of-mass and relative coordinates (Abraham 1983). 
This transformation is exact for p = 2 (see 0 2) string models with equal tensions on 

-1 -1  -1 

1 1 

Figure 3. An SOS model of interfacial adsorption in three-component systems. The -1/1 
interfaces are modelled by a full-space SOS string. The 0 bubbles are modelled by a 
combination of two SOS strings (see text). 
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the two strings making up the bubble. Due to the presumed universality of models of 
the class studied here, the transformation is almost certainly valid for p = 1 and for 
equal string tensions. This is the bubble construction we use. The bubble partition 
function is then a combination of the strings (b), for the centre-of-mass motion, and 
(c), for the relative motion. The transverse fugacity is introduced in the centre-of-mass 
part, and we construct the bubble generating function, 

where K 2  (=  J 2 / k b T )  is the string tension (the relative and centre-of-mass tensions are 
the same). The integration may be performed to give 

2 K ~ s  
l + u  Ze( t, U )  = y [ A  - ( A 2  - 1 ) " 2 ]  

where 

s = t /  K i ,  U = o / 2 K 2 ,  A = -1 +2( 1 + u') /s .  (23) 
Combining (20) and (22) in (19) gives the partition function of the SOS model of 

the interface depicted in figure 3. It is possible to evaluate the asymptotic properties 
of the resulting integrals. Performing the t integration first, there are two singularities 
that may dominate in the integration. There is a pole at Z,( t ,  w ) Z , (  t, o) = 1 ,  and a 
branch point at A2 = 1 .  The second integration in either of these cases may be performed 
by steepest descents. The steepest descents calculation shows that the maximum in 
the w integration is always at w = 0. This in fact may have been guessed at the beginning, 
as it reflects the fact that the transverse degree of freedom makes a negligible contribu- 
tion to the entropy of the interface configurations, in the thermodynamic limit. The 
critical condition is determined by when the dominant singularity crosses over from 
the branch point to the pole. This leads to a phase boundary defined by 

K,=KI= K2(K2+1) (24)  
and the free energies in the two regions are 

where 

On approaching the phase boundary from the pole side, the singular part of the 
free energy goes to zero as Fsing= alK - K,12. This is  the same form of singularity as 
found for wetting at a wall, and we conclude that the interfacial wetting transition 
found in this model is in the same universality class as wetting at a wall at coexistence 
(see 0 3). The interfacial adsorption is then expected to diverge with exponent 1 on 
approaching the phase boundary. The calculation may be easily carried through in 
the case of different centre-of-mass and relative string tensions. The phase boundary 
in this case is 

K l =  K3(K2+1) (26)  
where K ,  is the centre-of-mass tension and K 2  is the relative tension. There is no 
change in universality class in this generalisation. 
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We now wish to consider a model which includes an area term in the bubble 
partition function. The appropriate bubble generating function includes a field term 
in the centre-of-mass part and we find 

The dominant singularity for H # 0 is given by the composite pole. Upon combining 
(27) and (20) this gives (using the Mittag-Leffler expansion again) 

( Kl - K :  Y’ + K2 v ~ ) J , - ~ (  U V )  - 2K2 vJ, ( L Y V )  = 0 (28) 

where ~ = [ 4 t / ( 4 K : + w ~ ) ] ~ / ~  and (Y =2K2/H. 
This equation has a similar structure to that occurring in the prewetting case 

(equation (18)). The behaviour of interest occurs in the limit H + 0. The asymptotic 
solution to (28) can then be deduced from the properties of Airy functions (Abraham 
and Smith 1982, 1985). Using the Bessel recursion relations, one has (where primes 
denote derivatives with respect to argument) 

J & ( ~ ~ )  ( K , + K : ) ~ ~ - K ~  -- 
J , ( u v )  - v[K1 + (K2 - K:)Y’ ]  ’ 

Now let 

= 1 + yLY-2/3 (30) 

which is the most useful form for the discussion of the asymptotics. Putting (30) in 
(29), and using the asymptotic expansions of Bessel functions for U large (Abramowitz 
and Stegun 1970, equations 9.3.23 and 9.3.27), one finds 

In the thermodynamic limit it is the smallest v which solves (31 )  that dominates. The 
nature of the solution is determined by the sign of the leading term in (31). The 
zero-field critical point is reflected in this term changing sign and the point where this 
occurs is Kl = K,+ K : ,  in agreement with (24) (there is a higher temperature where 
the sign changes again; however, this is not physically relevant). At the critical point 
(24), the smallest value of y which solves (31) occurs very close to (asymptotically at) 
the first zero of Ai’(-2’l3y). This occurs at a finite y (Abramowitz and Stegun 1970), 
and so the leading scaling behaviour in v is determined by (30) with y constant. Above 
the critical point, the smallest y which solves (31) is asymptotically at the first zero of 
the function Ai( -21/3 y) ,  which again occurs at a finite y. In both cases, the interfacial 
adsorption is then given by 

as found in the two-component wall wetting case (Abraham and Smith 1982, 1985). 
Here v, is the smallest (in absolute value) solution to (31). 
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For K, < K,, the asymptotic behaviour of (31) changes and we find that the solution 
which minimises uo in this case is (to leading order) 

= 1~~ - ~ , 1 2 2 - 2 / 3 ~ 2 / 3 .  (33) 

To leading order, uo is then 

uo = I - I K ,  - K , I ~ ~ - * / ~  (34) 

The singular part of the free energy on approaching K, has the quadratic form found 
earlier (see equation (25)). 

Finally, it is possible to perform the scaling limit on the full integral representation 
of the partition function. One then finds to leading order the scaling function 

where X = ( / K l  - K , / a i i 3 ) / ( K 1  + K Z  - K : )  is the scaling variable. The formula is valid 
for any non-zero X .  In the case X = 0 one must consider the next term in the Bessel 
function expansion. 

5. Interfacial critical behaviour in three-component systems 

We consider the interfacial critical behaviour to be expected in two (bulk)-dimensional 
three-component systems in three cases. 

(a)  On approaching an interfacial wetting line which lies inside a bulk ordered 
phase: the interfacial adsorption may then diverge with exponents 1 or f. The exponent 
1 (Selke and Huse 1983, Huse et al 1983, Fisher 1984, Derrida and Yeomans 1985) 
has been observed in the chiral clock model. The exponent f should also be observed 
in the chiral clock model if a DSf term is added and the interfacial adsorption is 
measured at constant T in the limit as D goes to zero. 

(b)  On approaching a bulk first-order transition from the ordered side: the inter- 
facial adsorption may then diverge with exponents 1 or f ,  or if the temperature is low 
enough, remain dry (that is, the interfacial adsorption exhibits a first-order transition 
on crossing the bulk phase boundary). The exponent f has been observed in the 
Blume-Cape1 model above the bulk tricritical point (Selke and Yeomans 1983, Selke 
et a1 1985). One may observe a dry interface at the first-order transition in the 
Blume-Emery-Griffiths model, as the addition of the quadratic spin interaction term 
changes the relative strengths of the three types of interfaces present in the model. An 
interface tricritical point may be present in such a system. This tricritical point may 
not be very interesting, however, as the SOS model presented here suggests that the 
critical exponents (on approaching the wet region from the finite field region) at the 
tricritical point are the same as those away from the tricritical point. 

(c) On approaching a bulk second-order transition from the bulk ordered side: 
the interface behaviour is then modified by the bulk fluctuations. The interfacial 
adsorption may exhibit a first-order transition, as observed in the Blume-Capel model 
below its tricritical point (Selke et a1 1985), or diverge with exponent x, or exponent 
xJ3 .  Here x, is the exponent renormalisation due to bulk fluctuations. The exponent 
x, has been observed in the three-state Potts model (Selke and Huse 1983), where the 
bulk renormalisation is found to be U - p. The behaviour x,/3 should also be observed 
in the three-state Potts model if one adds a DSf and measures the interfacial adsorption 
at fixed temperature as D is taken to zero. 
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6. Conclusions 

393 

We have shown that the models of wetting and prewetting at a sticky surface, previously 
solved using transfer integral operator methods, may be solved using necklace generat- 
ing function methods. The mechanism for a phase transition in this method is a 
crossover in the dominant singularity in the asymptotic evaluation of a contour integral. 

An SOS model for interfacial adsorption is introduced and solved using this technique. 
The model shows interface wetting behaviour in the same universality class as surface 
wetting in two-component systems. Based on these models, a discussion is given on 
the interfacial critical behaviour to be expected in three-component systems. 
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